Monday, November 30, 2020

Chemical Engineering Degrees

 

Chemical Engineering Degrees

Chemical engineers are not only the lab coat wearing scientists who stand over beakers, mixing formulas in laboratories. They also work in the field, putting into practice the knowledge gained in laboratories, as well as their own brand of chemistry that applies the physical sciences and the life sciences.

They use mathematics and economics to create processes for converting raw materials or chemicals into forms that are more useful. Today's chemical engineers are involved with biomedical engineering, nanotechnology, and fuel cells, to name a very few of their specialties!

Chemical process engineers focus on the design, manufacture, and operation of industrial plants, their equipment, and the related chemical processes. Chemical product engineers development new or modified substances for consumables ranging from pharmaceuticals and face wipes, to furniture polish, foods, and far beyond.

Chemical engineers may do research at industrial or university levels, designing better pollution control, resource conservation, and safety measures. They can be involved in the design and construction of plants as project engineers, using their knowledge to select equipment, optimize production, minimize costs and increase profitability.

Read More: it tech salary

Friday, November 27, 2020

Some of the Jobs In Biomedical Engineering

 

Biomedical engineers design prosthetic limbs, artificial organs, and regenerate tissue. They create drugs and pharmaceuticals, collect and analyze biological data, and design life-saving equipment. They work with universities, hospitals, labs, government, industry, and regulatory agencies.

They work with doctors and patients seeking solutions to physical as well as physiological problems. It is important to incorporate into their own specialties any changes in related fields, so engineers scramble to stay abreast as technology rapidly evolves.

Universities teaching advanced levels of biomedical engineering commonly offer post-doctorate and research career opportunities. For example here is a list of research opportunities available through Florida A&M University:

  • Tissue Engineering for Bone and Cartilage Replacement
  • Advanced Polymeric Materials Characterization and Rheology
  • Magnetic Resonance Imaging of Cells, Tissues, and Organisms
  • Plasma Reaction Engineering for Pollution Control and Disinfection
  • Biomass Conversion to Energy by Enzymatic/Catalytic/Thermal/Plasma Methods
  • Advanced Computational Methods in Materials, Catalysis, and Transport
  • Solid State Materials Synthesis and Characterization
Read More: wifi connections

Thursday, November 26, 2020

Automotive Engineering Career

 

Automotive engineering is a branch of mechanical engineering that concerns the design, development and manufacture of cars, trucks, motorcycles and other motor vehicles. Automotive engineers also design and test the many subsystems or components that comprise a motorized vehicle.

Very few universities offer a bachelor's degree in automotive engineering. Consequently, many prospective automotive engineers earn a bachelor's degree in mechanical engineering from a university that also offers specialized courses in automotive engineering. However, there are plenty of universities offer master's degrees in automotive engineering.

High school students aspiring to become automotive engineers should develop a solid foundation in algebra, geometry, trigonometry and pre-calculus, physics and chemistry. These subjects are central to understanding the core concepts of any engineering discipline. Automotive engineering students need effective oral and written communications skills. Therefore, high school students should strive to do well in language arts classes, such as writing and speech. High school students should take available advanced placement or college classes to help prepare them for university engineering coursework and get a head start on building college credits.

Read More: wireless technologies

Wednesday, November 25, 2020

Audio Engineering Career Outlook

 Audio engineering is a very hands-on profession because it involves the use of a variety of equipment and software. Due to the invaluable experience of actually using the equipment, online degrees are not feasible for the most part. The only exceptions are a few online Master's programs with a focus on acoustics, which does not intricately involve equipment.

The length of the program varies with the different degrees. An Associate of Science requires approximately two years of study. Most Bachelor of Science programs take four years to complete. The Master's degree will add at least two years following the Bachelor program for a total of six years.

There is a variety of jobs that audio engineers hold in an equally wide variety of locations. Audio engineers are used in studio settings for the radio, television, movie, and music industries as sound engineers, boom operators, sound designers, sound editors, sound effects editors, and much more. In addition to studio work, there are also options for similar positions in live venues, like sports arenas, theatres, and concert tours.

Based on data collected by the United States Bureau of Labor Statistics (BLS) in May 2012, the mean annual salary for someone in the audio engineering field is just over $55,000. The BLS classifies audio engineers as sound engineering technicians, which includes anyone involved with the operation of equipment used to record, alter, and reproduce sounds in any of a variety of venues where recorded or live sound is used.

Read More: wifi connections

Tuesday, November 24, 2020

Job Functions of Applied Engineers

 Applied engineers work on the application, design and technical components in the development of new products. They integrate systems, thereby enhancing the manufacturing and utilization of an application as well as oversee the development teams within a company. Specific fields of applied engineering including six sigma, learn enterprises, quality control, nanotechnology, manufacturing systems and supply chain logistics and systems, as well as motorsport technology applications. These professionals employ a deliberate approach to solving a medley of problems regarding processes and flow systems, underscoring their highly refined technical, interpersonal and communication skills. Applied engineers have been instrumental in the development of aircraft, automobiles, and smartphones, among other products. If you are interested in becoming an applied engineer, contact the schools below this information to request information about programs near you!

These professionals demonstrate a proclivity to blend technical expertise with real world applications. In industrial settings such as robotics, aviation, computer drafting, electronics, graphic communications, construction and nanofabrication, applied engineers exhibit a range of skills, as they daily execute a bevy of tasks and duties to realize the fruition of a project. They employ statistics in control charts and tables to monitor system integrity; examine and/or establish quality control systems in a facility; execute production timelines; refine inventory systems; utilize production innovation in enhancing management; maintain standards in accordance with federal and municipal codes in maintaining safety and health standards; develop solutions to industrial organization problems; apply marketing and business acumen in the product lifecycle, and more Top firms looking to hire applied engineers include Northrop Grumman, Ford Motor Company and Motorola, Inc.

Read More: wlan vs wifi

Monday, November 23, 2020

Agricultural Engineering Jobs & Salary


Food will always be a growing commodity (no pun intended). Jobs for these engineers are found on farms, in manufacturing plants, equipment design, food production, animal production facilities, laboratories, construction, government systems that protect soil and water, and in biofuels engineering—worldwide (for the traveler in you) and just for starters.

These engineers are part of the leadership that help conserve, maintain, and improve our natural resources and environment. These employees will provide engineering assistance to his or her team, field office personnel, and landowners with planning, developing, and constructing on-farm conservation practices and irrigation projects statewide.

The US Bureau of Labor Statistics from 2011 show 2,650 employed agricultural engineers, employment rising by 6.5%, the lowest annual wages at $44,180 and the highest at $118,330. The median pay in this group is $74,630 per year.

The most visible association for agricultural engineers in the U.S. is the American Society of Agricultural and Biological Engineers (ASABE). Based in St. Joseph, Michigan, this international professional society is devoted to agricultural and biological engineering. The organization has about 9,000 members in more than 100 countries. ASABE provides opportunities to share research findings through conferences, journals, and a magazine. It has developed professional standards of practice and given members opportunities to network.

In 2005, the name was modified to better reflect the profession. The increase in biological engineering has greatly affected today's global agriculture systems. For example, genetically modified organisms have introduced massive changes in food production, logistics and trade.

Read More: wlan definition

Friday, November 20, 2020

Aerospace Engineering Degree

 


Aerospace engineers research, analyze, design, synthesize, develop and test aircraft, spacecraft and weapons. Aerospace engineers who focus on aircraft are called aeronautical engineers; those who concentrate on spacecraft are called astronautical engineers.

They are essentially concerned with the aerodynamic properties of flight vehicles, such as airfoil, control surfaces, lift and drag.

An aerospace engineers can specialize in areas such as structural design, propulsion, navigation, guidance and control systems, communications or defense systems.

They may also specialize in a particular type of equipment, including commercial and military planes and jets, helicopters, space shuttles, satellites, space vehicles, missiles or or combat aerial vehicles.

Aerospace engineers can develop a special expertise in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, avionics or guidance and control systems.

Read More: wireless network settings

Thursday, November 19, 2020

Master of Science Degree and Doctorate in Aerospace Engineering

 

Graduate students seeking a master's or doctorate degrees to augment their undergraduate or graduate education can take advanced courses in:

  • Aerodynamics and fluid mechanics
    • The study of air flow over a body, such as the wings on an aircraft or spacecraft.
  • Aeroelasticity and structural dynamics
    • The study of how inertial, elastic and aerodynamic forces interact.
  • Flight mechanics and control
    • The study of how forces affect a flight vehicle, how it responds to those forces and how to modify the vehicle to achieve the desired goals.
  • Propulsion and combustion
    • The study of creating mechanical power using internal combustion engines, jet engines, turbomachinery, propellers, wings, fins, and wheel and axles to generate force causing motion.
  • Structural mechanics and materials behavior
    • The study of the stress and strain on the components of a flight vehicle.
  • System design and optimization
    • The study of the application of algorithms to improve the performance, weight, reliability and/or cost of aircraft and spacecraft systems.

Wednesday, November 18, 2020

Transport Engineering Degree

 

Transport Engineering Degree

Transportation engineering focuses on the design and development of public transportation infrastructure and systems. As a discipline of civil engineering, practitioners endeavor to create roads, bridges, mass transit systems and other modes of transport to enhance society. In this capacity, these practitioners may design, operate and repair any of these assets with the aim of producing fast, efficient, safe, cost-effective, and sustainable forms of transport. Airport, highway, railroad and port engineering are all subsets of the discipline.

On a daily basis, transport engineers juggle a medley of tasks from interfacing with clients and suppliers in-person and over e-mail to meeting with their teams to receive project status updates and to address any complications in a project lifecycle. More business-oriented professionals may attend strategy sessions with their executive teams and/or meet with current and potential investors to discuss prospective opportunities in the market place. In the evenings, many professionals engage in continuing education initiatives, whereby they may take a course on new technological advances and/or attend a presentation by an academic or industry practitioner to receive insight on best practices or solutions to existing problems.

National and local governments as well as private firms seeks to employ these professionals for global projects, where they are given the responsibility to ensure safety and efficiency, whereby they are entrusted to ensure public safety by meeting building codes and standards through computer hardware and software applications.

Read More: wirelesssignal

Tuesday, November 17, 2020

Real Life Impact of Thermal Engineers

 

Real Life Impact of Thermal Engineers

Thermal engineers have been instrumental in changing the way people find and use energy throughout the world as well as in pushing space exploration into new realms. Most people think of Google as an Internet search engine company, but the firm has expanded its resources into creating better energy solutions for the planet. The firm actively recruits thermal engineers to work on its project for developing clean and affordable power grids. Their Energy Access team endeavors to recruit and nurture engineers to its efforts, underscoring its conviction in its identity as an engineering firm.

Moreover, the University College London (UCL) Mullard Space Science Laboratory considers the work of its thermal engineers as vital for enhancing space exploration initiatives. One of their professionals, Christine Brockley-Blatt, has exemplified the seamless transition these practitioners make from the classroom to real world applications. After completing her undergraduate degree in Mechanical Engineering and Physics, Brockley-Blatt completed an internship with an aerospace firm, whereby she trained on a project dealing with the landing gear and propeller technology for a medley of aircraft models. She then applied more of her thermal engineering training to an automotive firm. With UCL she currently works as a project manager on cooling technology in outer space exploration solutions. On a daily basis, she employs calculations in mechanical and thermal capacities, performs project management duties, and demonstrates oral and written communications. Her rich educational background and professional experience illuminate the depth and versatility the field requires of its practitioners to excel.

Read More: setting up wireless networking

Monday, November 16, 2020

Structural Engineering

Structural Engineering

Structural Engineering focuses on the support integrity of large developments such as buildings, bridges and stadiums. Structural engineers are responsible for some of the most import constructions in history, including Washington Roebling who built the Brooklyn Bridge in New York and Gustave Eiffel who completed The Eiffel Tower in Paris, France. Structural engineers traditionally collaborate with a team of professionals including architects, urban planners and civil engineers, among others, to realize the completion of a project.

Federal and local governments as well as private enterprises contract these practitioners for work throughout the world, whereby they are entrusted to ensure public safety by meeting building codes and standards. For buildings, these professionals achieve this by developing the components such as roof framing columns and foundations. In bridges, they develop the piers, deck and/or stringers. In addition, they select the most appropriate materials including wood, concrete, steel and/or aluminum, thereby protecting the structure and surrounding communities in the case of natural disasters, weather, collisions or explosions. To determine the best materials, structural engineers rely on digital hardware and software applications for modeling and analysis.

Read More: wlan meaning

Friday, November 13, 2020

Software Engineer Career Advancement & Salary

 

Software Engineer Career Advancement & Salary

The job market for Software Engineers is incredibly broad. There are software components involved in virtually every modern development you can think of. Computers control everything from aircraft to medical imaging devices, and these systems are conceived and executed by Software Engineers.

Since it’s such a big part of our daily lives, most people think immediately of software running on the Internet when they envision a career in this arena. While there are a plethora of rewarding jobs developing software for use on the Internet, it’s a good thing to know that there are also rewarding jobs in areas like computer simulations, artificial intelligence, real-time systems, aerospace, and embedded systems.

According to an October 18th, 2012 report on GlassDoor.com, Software Engineers at top companies average $92,648 annually. Google topped the compensation charts, paying their Software Engineers an average of $128,336.

The US Government’s Bureau of Labor Statistics reports earnings on multiple software development jobs, none specifically labeled as Software Engineers. However, the average annual earnings reported for several different Software Engineering-related career fields corroborate the salary figures reported by GlassDoor.

Read More: ccnp cisco

Thursday, November 12, 2020

The Main Focus of Petroleum Engineering

 

The Main Focus of Petroleum Engineering

Petroleum engineering deals with the production of hydrocarbons—the products of crude oil and natural gas. This above-ground field focuses on recovering fossil fuels from below ground in the most economical and environmentally friendly ways.

Trained to understand the physical behavior of oil, water, and gas deep in porous rock and under high pressure, these skilled engineers make reliable estimations of the volume of a resource's reservoir.

They form teams with geologists to determine the best methods for depleting reservoirs. Related disciplines include drilling, reservoir simulation, well engineering, petroleum geology, and geophysics.

Since the beginning of petroleum engineering, in the early 20th century, many easily accessed deposits have been depleted. Fuel harvesting has become more dependent on fresh technologies incorporating horizontal drilling and computer modeling.

Drilling in deserts and in deep waters requires today's engineers to have expertise in intelligent systems, geomechanics, and hydraulics, naming only a few things on their growing list of knowledge bases.

Read More: cisco certs

Wednesday, November 11, 2020

Nuclear Engineering Degree through Online

 

Nuclear Engineering Degree through Online

A number of colleges and universities offer online nuclear engineering studies toward master's and doctoral degrees. Some of these universities include, but are not limited to, Penn State, MIT, and Ohio State.

Online nuclear engineering degrees open a wide range of opportunities for students, at both graduate and postgraduate levels. A graduate degree in nuclear engineering opens doors to better job opportunities.

The Bachelor of Science degree in Nuclear Science and Engineering is a basic four-year course, but a specialized five-year course can incorporate a master's degree. The Ph.D. degree generally adds two years of study beyond the master's.

Because nuclear science and engineering has such a broad range, graduates can be prepared for a wide variety of careers. Today's graduates enjoy research and teaching jobs at universities; they work at power plants and in government and industrial laboratories. They have launched LED lighting companies. They manage hedge funds, create interactive science and art displays, design new reactors, improve aircraft components, attend medical school, and design domestic energy policies.

Read More: ccp security

Tuesday, November 10, 2020

Discover the World of Nanoengineering

 

Discover the World of Nanoengineering

Nanoengineering encompasses the practice of the profession on a nanoscale, which stems from the nanometer unit of measure, equivalent to one billionth of a meter. Within the industry, nanoengineering is synonymous with practices of nanotechnology, whereby it focuses on the engineering component of a given technology rather than the scientific side. Nanotechnology professionals have become prized professionals in the current marketplace for their skills and training dealing with microscopic applications.

From the automobile and energy industry to healthcare and technology firms, companies around the world eagerly seek to attract and develop these professionals. Within these realms, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are the dominant techniques of the field used to solve problems and originate new technologies. Both techniques pivot on generating microscopic probes to manipulate and track the movement of atoms with the idea of capturing something significant to translate into real world applications such as revolutionary manufacturing materials or new pharmaceutical products.

To learn more about becoming a nanoengineer, contact the schools below to request more information. We recommend contacting multiple schools to compare programs.

Professionals in this field often perform a medley of duties depending on the industry they work in and/or their educational backgrounds. In biosciences, nano engineers dedicate their time to developing new medical device products and ways to enhance existing ones. From a construction viewpoint, these experts investigate and evaluate the development of new materials to develop more sustainable and durable building products and materials. Automotive companies employ these engineers to develop more efficient processes within an engine system and materials to build and pad vehicle systems and interiors. Regardless of the field, these engineers choose to employ their skills and talents, the field requires immense patience and attention to detail. Refining the effective use of STMs and AFMs, critical to the development of new technologies and breakthroughs, often proves to be challenging for most practitioners in the field. Powerful microscopes with exceptionally fine silicon tips are employed to monitor the nano activity harnessed to develop new applications. Establishing a suitable tip, though, can sometimes take seven days alone. Nevertheless, global firms like Abbott Laboratories, Tesla, Exxon-Mobil, and Sony are a few of the global firms capitalizing on the potential of nanotechnology.

Read More: certified alarm systems

Monday, November 9, 2020

Molecular Engineering

 

Molecular Engineering

Molecular engineering entails the creation of molecules and the development of new products from them. Often these molecules do not exist naturally and may not be stable enough to employ beyond a narrow of parameter of uses. It is quite difficult to create these particles, as it requires the manual use of sensitive equipment such as a scanning tunneling microscope. The technology has the capacity to take entire libraries of books and condense their contents into a digital storage device the size of a single cube of sugar. This is an interesting field of engineering, with limitless potential. If you want to learn more about working towards a career in this area, search for schools in your area by using our list below. The work of molecular engineers is present in every industry, including robotics, biotechnology, pharmaceuticals, materials, fashion and entertainment. In addition, the agricultural industry and medical devices field is expected to be transformed by innovations in molecular engineering, thereby forging new markets and employment opportunities for trained professionals.

The field is particularly important for scientific materials research and pharmaceuticals, as it is employed as a sophisticated form of chemical engineering. A potential application of molecular engineering would include a minute device that navigates seamlessly through a human body eradicating cancerous cells thereby precluding them from spreading. Duties of professional in the field may well include using statistics and computer models to predict molecular manipulation outcomes; employ business acumen in marketing applications; demonstrate leadership capabilities in managing a team of engineers and researchers; as well as manage the entire life cycle of product development.

Read More: professional security systems

Real-World Example of Mining Engineering

 

Real-World Example of Mining Engineering

The working and academic lives of a mining and geological engineer is one of constant problem solving, exploration, attention to detail and communication. As one of, if not the primary coordinator for digging and mining operations, the engineer is charged with the planning, logistics, safety assurance and contingency/emergency management of their projects. In addition to the technical engineering skills required for the surveying, planning, digging and extraction or study of materials, the project engineers are quite often also required to maintain strong lines of communication with the crews of professional miners or students they are working with. As such, and especially in respect to safety or emergency management, the numbers of women entering the fields has been steadily increasing.

Former University of Arizona mining student and captain of the women’s mine rescue team, Allison Hagerman was interviewed by the school news site UANews.org in 2013, during one of its mining and geological engineering drilling competitions at the school’s San Xavier underground mine. Speaking about her experiences, she highlighted that safety in the field was not only paramount, but also presented a specialization. One which, following her graduation in May of 2013, inspired her to take the reigns as the captain of the women’s rescue team at the San Xavier Mining Laboratory. While talking to UANews about her studies of the mining and geological sciences, Hagerman eagerly pointed out that along with a 100% program graduation rate, her skills and studies allowed her to transition directly out of school into a stable, high paying position in the private sector.

Read More: ccno phone number

Friday, November 6, 2020

Mechatronic Engineering Career Outlook

 

Mechatronic Engineering Career Outlook

Mechatronics engineering revolves around the design, construction and operation of intelligent products and systems, stemming from the integration of hardware and software applications. The Japanese engineer Tetsuro Mori developed the name for the field in 1969, while working as an executive engineer at the firm Yaskawa. The field is still evolving and sometimes is still referred to as Asset Management in the industry. Professionals in this arena develop approaches to industrial problems employing mechanical and electronic solutions and computer applications. They develop products through the integration of diverse technologies for streamlining processes and applications in endeavors like underwater exploration. These engineers create and evaluate factory production lines blending manufacturing and technologies to enhance efficiency. In addition, they preserve and augment manufacturing designs and processes in applications such as robot floor cleaners.
If you are looking for information about Mechatronics and want to speak with colleges and universities about earning your engineering degree, we can help. We work with schools across the nation to inform students of their options for education. Use our directory of schools to request more information today about their programs.

Mechatronic engineers traditionally work in a laboratory, processing plant or engineering office setting, especially among product developers, manufacturing firms, mining or forestry industries, aerospace and defense, government and industry research groups, as well as electrical power facilities. In addition, the skill set is highly desired by prominent global enterprises in the automotive, aerospace and consumer products sectors and in innovative technology firms that manufacture and supply software components and equipment. Often graduates will establish their own firms or capitalize on research opportunities in the fields of bioengineering or nanotechnology. The demand for mechatronic specialists will continue to grow as more institutions seek to integrate technological innovations in the computer, electronic and sensor areas to enhance product processes and services. Institutions across the globe that have capitalized on mechatronics technology include Bosch, Royal Dutch Shell, FOX Racing, and Keurig Green Mountain.

Read More: cisco ccnp security

Thursday, November 5, 2020

Mechanical Engineering Education and Careers

 

Mechanical Engineering Education and Careers

  • Bachelor of Science degree from an accredited university
  • Four years of work experience that is acceptable to the state licensure board
  • Five character references, three of which are from professional engineers
  • Passing scores on the Engineer-in-Training (EIT) or Fundamentals of Engineering exam and the Principal and Practice of Engineering exam (PE exam).

The EIT exam can be taken while still in engineering school. A great source of information about becoming a PE is the National Society of Professional Engineers.

Careers

A mechanical engineer can work in industries such as aerospace, automobile, combustion engines and fuels, fluid machinery, manufacturing and construction and building sciences. A postgraduate of mechanical engineering has a host of career opportunities in other fields, such as law, business and medicine. A lawyer with a mechanical engineering degree can have a very lucrative career in patent or products liability law.

Employment opportunities in management are more available for the mechanical engineer who has a master's degree in engineering or business administration. Additionally, mechanical engineers with a postgraduate degree in biomedical engineering might work for private medical companies or hospitals developing hip replacements, prosthetics, robotic surgical equipment or diagnostic and treatment equipment.

Read More: ccnp security certification

Wednesday, November 4, 2020

Materials Science Engineering

 

Materials Science Engineering

Few studies are as vital to the advancement of industry as Materials Science and Engineering. Focused on the study, discovery and creation of new physical materials for use in everything from medicine, automotive and aerospace engineering and consumer goods, to rocketry and space exploration, careers in Materials Science and Engineering maintain a heavy focus on attention to detail, critical thinking and problem solving skills. As an “interdisciplinary science,” Materials Science and Engineering combines a variety of specific skills and studies, varying upon the professional or scientific objectives of the student. With strong emphasis in areas such as mathematics, thermodynamics, chemistry, bio-chemistry and materials properties (mechanical, transitional, chemical,) Materials Science and Engineering is a study which focuses on the physical materials used in given applications, for the purposes of research, safety, quality control and in certain professional areas, forensic engineering and investigation.

If you are ready to learn more about this area of engineering, contact the schools in our directory to learn more about their degree programs. We work with these schools directly and do not charge for our services. We simply want to help students like you understand your options!

Classically referred to as “metallurgy” in many schools and training programs, Materials Science and Engineering is generally regarded as a relatively new field of study, combining older metallurgic arts and understanding with newer studies of things such as atomic structure, applied physics and the creation and study of newer synthetic materials. Professional opportunities in the field cover a broad spectrum of industrial and scientific sectors, ranging from basic scientific research and discovery to applicable industry specific occupations in fields such as bio-technology, defense and consumer product engineering.

Read More: ccnp requirements

Software Engineering Professional Associations

There are numerous professional associations where Software Engineers can network and share information. One of the largest and oldest is th...