Monday, August 31, 2020

Real Life of an Applied Engineer

 

Real Life of an Applied Engineer

As a project engineer for Applied Engineering, Mike Jamieson daily exhibits the range of skills a practitioner in the field must master to excel. He interfaces with internal and external team members and associates in-person and over e-mail every morning. He then focusses on business activities such as speaking with various suppliers on product inventory, consulting with clients on budget requirements and researching options on the internet. In the afternoon, he often leaves the office to visit clients and ongoing projects. He enjoys the opportunity to get out of the office and into the field to interact live with people. For example, on one project he consulted with one of the managers on an HVAC system for a residential structure, specifically the ductwork and air flow systems. Later in the afternoon, he returns to the office to revisit projects he initially tacked in the morning. He may attend more meetings to deliver presentations on status or negotiate with suppliers to acquire the best pricing for a client project. Demonstrating his commitment to continuous education, Jamieson in the evenings attends functions featuring industry thought leaders who make presentations on recent development in technology and best practices. In the past he attended a dinner featuring a presentation by a professor at Purdue University who presented a talk on refrigeration concepts and developing compressor innovations. Ultimately, each day presents him with a range of challenges and learning experiences that enrich him.

Salary information

The Association of Technology, Management, and Applied Engineering has developed congresses and resources to enhance the visibility of the field and equip practitioners with the latest knowledge and best practices in the industry. Like this organization, the Technology Student Association (TSA) and the National Society of Professional Engineers (NSPE) offer resources and materials to candidates in the field, including a library of publications, news and technological innovations. These associations work to provide rich mentoring and networking opportunities for members and aspiring candidates to enter and/or advance in the field. At the university level, students capitalize on alumni networks and on-campus recruiting efforts made by leading firms to fulfill their talent needs. Companies such as IBM, Ingersoll Rand, General Mills and CoreComm are a sampling of the firms who have acquired new personnel through these avenues. The U.S. Bureau of Labor Statistics (BLS) projects a gradual decline in the employment prospects for these types of professionals, as manufacturing activities fall within the United States. O*Net reports that these professionals earn a yearly salary of $60,560.

Read More: network management job

Friday, August 28, 2020

Agricultural Engineering Career Outlook

Agricultural Engineering Career Outlook

Agricultural engineering degrees prepare students to work professionally in the many fields of agriculture. Subsets of the studies belonging to the classification of agriculture offer unlimited opportunities for involvement in this field. Demand for Agricultural Engineers has grown over the last 10 years.Degrees in agricultural engineering cover all aspects of the industry, from water and waste issues, massive farming of foods and livestock, water farming, farming equipment, and farm economics to genetically designed corn and cows.

Earning a degree gives students textbook knowledge and hands-on vision of their chosen field. Fieldwork and laboratory projects combined with actual practice provide a well-rounded education.The bachelor of science is the first degree to obtain. While majoring in agricultural engineering, a student can minor is any other field. Often students will minor in a related subject such as economics, to enhance their food engineering major, for example.

Graduate students are eligible to pursue a number of advanced degrees, including the Master of Science, Master of Engineering, Master of Agriculture, Doctor of Philosophy and Doctor of Engineering. These students can major in bioacoustics, biomaterials science, bioprocess engineering, environmental and natural resource engineering, food engineering; food, feed and fiber processing; machine and energy systems; and systems analysis.

Read More: network managers job

Thursday, August 27, 2020

Real-life of a Transport Engineer Career

 Real-life of a Transport Engineer Career

Based on the experience of several young practitioners in the profession, the field of transport engineering offers a rich professional experience. Scott Sorensen , an engineer from the University of Nebraska, developed an after school education program to teach principles of engineering to high school students, whereby they designed buildings and created electrical applications for Christmas lights. Matthew Arnold, an engineer from Kansas State University, finds the hands on nature of the field most engaging. He thrives performing outdoors, enabling him the experience the vitality absent working in an office. Both Sorensen and Arnold enjoy the state-of-the-art technology they employ on a daily basis such as self-driving vehicles. New challenges encountered have made the field particularly rewarding for Tomas Lindheimer, an engineer from the University of Kansas. He enjoys the broad concepts and intellectual curiosity the industry demands. He believes he’s constantly learning new concepts that compel him to rethink his preconceived notions.

The direct impact the field has on people’s lives serves as the most attractive part of the profession for these young professionals. Instead of sitting in an office, detached from their fellow man, these engineers see the influence their work has on the daily lives of the people they serve. Many professors and industry executives encourage aspiring students and candidates to carefully consider the impact their work has on society as a whole. It is one of a few industries where practitioners see first-hand the results their technical backgrounds have on the ways people experience their daily lives.

Read More: network manager job description

Wednesday, August 26, 2020

Software Engineer Education Requirements

 

Software Engineer Education Requirements

Software Engineering degrees are available at the undergraduate, master’s, and doctorate (PhD) levels. As you move up in a Software Engineering career, increasing your education level will allow you to tackle ever more complex systems. At the pinnacle of Software Engineering are people that design the systems behind well-known technological marvels from the Space Shuttle to Google’s databases.

Most colleges require similar courses as prerequisites for their Software Engineering programs. You’ll normally be expected to study mathematics up through Calculus, basic computer programming, and cross-discipline engineering basics. You’ll also take courses in computer algorithms and system documentation methods prior to moving on to the core Software Engineering program.

Once your undergraduate prerequisites are met, you start taking classes in Software Engineering. This is where you gain cutting-edge expertise in skills like requirements identification, system design, software integration and software testing methodologies. During this coursework, you’ll learn how modern software systems are designed and implemented. There are an incredibly complex number of variables when engineering software components, and a Software Engineering degree provides the educational foundation you need to be productive in the field.

There are numerous avenues for studying Software Engineering. Virtually every major university offers this as an undergraduate major, and many larger colleges offer Master’s and PhD programs as well. You can also get a Software Engineering degree through many of the top online colleges.

Read More: computer network support technician

Tuesday, August 25, 2020

Employer Requirements for Nanoengineers

 

Employer Requirements for Nanoengineers

Employers require these professionals to have completed at least a Bachelor’s Degree in nanoengineering or chemical engineering to assume a job in the industry. Undergraduate students explore coursework that prepares them for making contributions in the fields of medicine, energy and environmental applications, among others. Students take classes that integrate a medley of math, science and engineering courses that prepare them for the versatile field. Acquiring a Master’s Degree or Ph.D. in the field may be required to qualify for some executive positions with a given company. Advanced education also enables these professionals to undertake teaching roles at universities. For those seeking business-based positions, a candidate should focus on developing leadership and management skills, as they will be asked to spearhead a team of engineers. In addition, they will be asked to communicate and negotiate with suppliers. In this setting, superb oral and written communication skills will prove essential.

Professionals in this field often perform a medley of duties depending on the industry they work in and/or their educational backgrounds. In biosciences, nanoengineers dedicate their time to developing new medical device products and ways to enhance existing ones. From a construction viewpoint, these experts investigate and evaluate the development of new materials to develop more sustainable and durable building products and materials. Automotive companies employ these engineers to develop more efficient processes within an engine system and materials to build and pad vehicle systems and interiors. Regardless of the field, these engineers choose to employ their skills and talents, the field requires immense patience and attention to detail. Refining the effective use of STMs and AFMs, critical to the development of new technologies and breakthroughs, often proves to be challenging for most practitioners in the field. Powerful microscopes with exceptionally fine silicon tips are employed to monitor the nano activity harnessed to develop new applications. Establishing a suitable tip, though, can sometimes take seven days alone. Nevertheless, global firms like Abbott Laboratories, Tesla, Exxon-Mobil, and Sony are a few of the global firms capitalizing on the potential of nanotechnology.

Read More: entry level network technician jobs

Monday, August 24, 2020

Mechatronic Engineering Career Outlook

 

Mechatronic Engineering Career Outlook

Mechatronics engineering revolves around the design, construction and operation of intelligent products and systems, stemming from the integration of hardware and software applications. The Japanese engineer Tetsuro Mori developed the name for the field in 1969, while working as an executive engineer at the firm Yaskawa. The field is still evolving and sometimes is still referred to as Asset Management in the industry. Professionals in this arena develop approaches to industrial problems employing mechanical and electronic solutions and computer applications. They develop products through the integration of diverse technologies for streamlining processes and applications in endeavors like underwater exploration. These engineers create and evaluate factory production lines blending manufacturing and technologies to enhance efficiency. In addition, they preserve and augment manufacturing designs and processes in applications such as robot floor cleaners.
If you are looking for information about Mechatronics and want to speak with colleges and universities about earning your engineering degree, we can help. We work with schools across the nation to inform students of their options for education. Use our directory of schools to request more information today about their programs.

Mechatronic engineers traditionally work in a laboratory, processing plant or engineering office setting, especially among product developers, manufacturing firms, mining or forestry industries, aerospace and defense, government and industry research groups, as well as electrical power facilities. In addition, the skill set is highly desired by prominent global enterprises in the automotive, aerospace and consumer products sectors and in innovative technology firms that manufacture and supply software components and equipment. Often graduates will establish their own firms or capitalize on research opportunities in the fields of bioengineering or nanotechnology. The demand for mechatronic specialists will continue to grow as more institutions seek to integrate technological innovations in the computer, electronic and sensor areas to enhance product processes and services. Institutions across the globe that have capitalized on mechatronics technology include Bosch, Royal Dutch Shell, FOX Racing, and Keurig Green Mountain.

Read More: networking technician job description

Friday, August 21, 2020

Computer Engineering Education

 

Computer Engineering Education

Computer Engineering degrees are available at all education levels: undergraduate, master’s and doctorate (PhD). Most undergraduate Computer Engineering programs allow you to specialize along one of several tracks because the entire career field is simply too broad to cover in an undergraduate program.

As you progress in your Computer Engineering career, you’ll be able to study increasingly complex topics in hardware and software systems. Occupying the top tier of Computer Engineering jobs are professionals with vast experience designing the overall system to control things like a passenger airliner, the International Space Station, or a nuclear power plant.

Computer Engineering requires a combination of skills from other engineering disciplines, and most colleges will require the same courses as prerequisites for their degrees. You’ll likely study mathematics up through Calculus, basic software programming, physics and electronic or electrical engineering basics.

Read More: jobs with a+ certification

Thursday, August 20, 2020

Masters of Chemical Engineering

 

Masters of Chemical Engineering

Aside from the standard 4-year-degree courses, there are degrees with emphasis on environmental, biochemical, or materials engineering. Environmental studies prepare engineers to work on waste minimization, pollution control, and waste management. Biochemical studies prepare students to enter the biochemical industry, and support a strong pre-med program.

Materials engineering incorporates chemistry and applied physics, with interest in the atomic and molecular levels of materials. Emphasizing these areas requires a slightly heavier course load. On graduating, students are traditional chemical engineers as well as specialists.

Beyond receiving a B.S. in chemical engineering, students can pursue other graduate degrees. The master's degree (M.Sc.) for chemical engineering is the next level, and generally requires 5 quarters of study. Typically, a university will allow no more than 3 years for the completion of this degree, and a grade point average of 3.00 is required.

Doctor of philosophy (PhD) studies prepare graduates to take active parts in the ever-changing field of chemical engineering. A PhD can access all levels of industrial and research organizations such as national laboratories or university teaching.

There are too many lab and field study requirements to make online study suitable for a conventional B.S. in chemical engineering, but it is possible to earn a master of science degree in chemical engineering (MSCHE) online, through some sources. These opportunities are designed for outstanding students who already have engineering degrees. Qualifications and prerequisites are stringent.

Read More: what does comp tia stand for

Wednesday, August 19, 2020

Automotive Engineering Degrees

Automotive Engineering Degrees

Automotive engineering is a branch of mechanical engineering that concerns the design, development and manufacture of cars, trucks, motorcycles and other motor vehicles. Automotive engineers also design and test the many subsystems or components that comprise a motorized vehicle.

Very few universities offer a bachelor's degree in automotive engineering. Consequently, many prospective automotive engineers earn a bachelor's degree in mechanical engineering from a university that also offers specialized courses in automotive engineering. However, there are plenty of universities offer master's degrees in automotive engineering.

High school students aspiring to become automotive engineers should develop a solid foundation in algebra, geometry, trigonometry and pre-calculus, physics and chemistry. These subjects are central to understanding the core concepts of any engineering discipline. Automotive engineering students need effective oral and written communications skills. Therefore, high school students should strive to do well in language arts classes, such as writing and speech. High school students should take available advanced placement or college classes to help prepare them for university engineering coursework and get a head start on building college credits.

Read More: a+ certification job opportunities

Tuesday, August 18, 2020

Aerospace Engineering Degree

 

Aerospace Engineering Degree

Aerospace engineers research, analyze, design, synthesize, develop and test aircraft, spacecraft and weapons. Aerospace engineers who focus on aircraft are called aeronautical engineers; those who concentrate on spacecraft are called astronautical engineers. They are essentially concerned with the aerodynamic properties of flight vehicles, such as airfoil, control surfaces, lift and drag.

Aerospace engineer can specialize in areas such as structural design, propulsion, navigation, guidance and control systems, communications or defense systems. They may also specialize in a particular type of equipment, including commercial and military planes and jets, helicopters, space shuttles, satellites, space vehicles, missiles or or combat aerial vehicles.

Aerospace engineers can develop a special expertise in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, avionics or guidance and control systems.

Read More: comptia a+ technician

Monday, August 17, 2020

Real Life of a Structural Engineer

 

Real Life of a Structural Engineer

John Shmerykowsky , an experienced structural engineer, has witnessed first-hand the rewards of the career as well as the technological transformations that are reshaping the industry. As a principal of his own firm, he spearheaded the work completed at the Phillip Morris building in New York City at 120 Park Avenue. He works primarily as a consultant to architects, while he completed his education at Fountainbleu in Paris. Shmerykowsky has developed his reputation by completing projects that feature unique challenges. For example, the Phillip Morris project possessed a structure that was one quarter positioned over functioning subway tracks that were employed to transport garbage. His team had to develop an approach that would enable them to complete work on the building, while enabling the tracks to run without interruption. 

He also developed sustainable features in the building including windows conducive to harnessing natural light. Over time, he has seen how vital digital applications have become to the industry, whereby he encourages all aspiring professionals to become comfortable with the technology as well as current ones to reman vigilant in keeping current on computer-based trends. His firm Shmerykowsky Consulting Engineers currently seeks structural engineers to add to their team to help realize current projects for their portfolio of clients. Like the company’s founder, the firm seeks engineering professionals that possess a diverse range of technical, business, interpersonal and communication skills that are tantamount to executing current and future structures throughout the world.

Read More: comptia a+ certified jobs

Friday, August 14, 2020

Nanoengineering Degree Career Outlook

 

Nanoengineering Degree Career Outlook

Nanoengineering encompasses the practice of the profession on a nanoscale, which stems from the nanometer unit of measure, equivalent to one billionth of a meter. Within the industry, nanoengineering is synonymous with practices of nanotechnology, whereby it focuses on the engineering component of a given technology rather than the scientific side. Nanotechnology professionals have become prized professionals in the current marketplace for their skills and training dealing with microscopic applications.

From the automobile and energy industry to healthcare and technology firms, companies around the world eagerly seek to attract and develop these professionals. Within these realms, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are the dominant techniques of the field used to solve problems and originate new technologies. Both techniques pivot on generating microscopic probes to manipulate and track the movement of atoms with the idea of capturing something significant to translate into real world applications such as revolutionary manufacturing materials or new pharmaceutical products. To learn more about becoming a nanoengineer, contact the schools below to request more information. We recommend contacting multiple schools to compare programs.

Professionals in this field often perform a medley of duties depending on the industry they work in and/or their educational backgrounds. In biosciences, nanoengineers dedicate their time to developing new medical device products and ways to enhance existing ones. From a construction viewpoint, these experts investigate and evaluate the development of new materials to develop more sustainable and durable building products and materials. Automotive companies employ these engineers to develop more efficient processes within an engine system and materials to build and pad vehicle systems and interiors. Regardless of the field, these engineers choose to employ their skills and talents, the field requires immense patience and attention to detail. Refining the effective use of STMs and AFMs, critical to the development of new technologies and breakthroughs, often proves to be challenging for most practitioners in the field. Powerful microscopes with exceptionally fine silicon tips are employed to monitor the nano activity harnessed to develop new applications. Establishing a suitable tip, though, can sometimes take seven days alone. Nevertheless, global firms like Abbott Laboratories, Tesla, Exxon-Mobil, and Sony are a few of the global firms capitalizing on the potential of nanotechnology.

Read More: jobs for a+ certification

Thursday, August 13, 2020

Types of Jobs in Marine Engineering

Types of Jobs in Marine Engineering

Marine engineering graduates have a number of career options. They may choose to work as naval combat or propulsion engineers or marine equipment specialists. Becoming a marine systems, marine structural, or ship’s engineer is also a possibility. Others may find the job duties of a marine equipment specialist or hydrographic surveyor more to their liking.

Many companies hiring freshly graduated marine engineers provide hands-on training using new employees’ academic knowledge as a foundation. In general, undergraduate students are expected to take advantage of marine engineering-related work-study jobs and internships to improve their likelihood of being hired post-graduation.

Individuals with a masters or PhD in Marine Engineering usually aim for jobs in government or academia. Working for private design, engineering and architectural firms is also a popular choice. Potential jobs for those holding advanced Marine Engineering degrees include:

  • Engineering Professor
  • Submarine Engineer
  • Shipyard Project Engineer
  • Marine Operations Manager
Read More: a+ cert jobs

Wednesday, August 12, 2020

Computer Engineering Career Outlook

 Computer Engineering Career Outlook

Most people own or have ready access to a personal computer. These marvels of modern technology have revolutionized everything from the way we get our news to how we communicate with friends and relatives to how we entertain ourselves. However, the traditional PC or laptop is only one type of computer. Virtually every modern machine and process is computer-controlled. Some computers are tiny, as in the smallest cell phones and MP3 players.

Other computers are actually massive networks of thinking machines, working on terabytes of data and cranking out billions of calculations per second. The common factor making these machines possible is the Computer Engineer. Computer Engineering differs from Software Engineering and Computer Science in that it focuses on the actual hardware that’s responsible for performing the work. Software is the set of instructions used by a computer to get work done.

Without Computer Engineers designing the hardware platform it runs on, software would be so many useless bits of data. While they need to know the principles of software operation, Computer Engineers are responsible for designing the components of a computing system. Whether that computer is in the Stealth Bomber or under your car’s hood, all computers have similar components and functions, varying mostly in size, shape and application.

Computer Engineers design everything from the Central Processing Unit to primary and secondary memory storage to input and output methods. Even if they are using off-the-shelf components, they’re responsible for making sure the integration works flawlessly.

Read More: a plus certification jobs

Tuesday, August 11, 2020

Master’s Degree & Average Automotive Engineering Salary

 

Master’s Degree & Average Automotive Engineering Salary

A master's degree in automotive engineering is not necessary to work in the field, but such a degree will give students specialized automotive engineering knowledge and skills. Moreover, master's degree programs offer research opportunities for students. It takes about two years to complete a master's degree program in automotive engineering.

To earn a master's degree, the student must satisfy the university's thesis requirements and/or complete a final project. The few universities that offer online automotive engineering degrees do so only at the master’s degree level. The student gains only theoretical knowledge from an online master's degree. The student does not receive any hands-on experience, which can be important to landing a job in automotive engineering. The online programs assume that the student received hands-on experience while obtaining the bachelor's degree. Therefore, online master's degree programs in automotive engineering are meant for the working automotive engineer.

In 2011, automotive engineers earned an average income of $117,600 in 2011. This was a 10 percent increase from the 2010 median salary of $107,000, according to SAE International.

The Society of Automotive Engineers (SAE) and the American Society of Mechanical Engineers  provide helpful information about scholarships and financial aid, design and racing competitions and networking opportunities. Automotive engineering students should consider participating in SAE’s “Collegiate Design Series.” These competitions are great opportunities for students to apply their book knowledge to the design, building and testing of an actual motor vehicle. Additionally, students can show off their talents to recruiters for prospective employers.

Read More: jobs with a+ certification



Monday, August 10, 2020

Acoustic Engineering Career Outlook

 

Acoustic Engineering Career Outlook

Acoustic engineers focus their efforts on the shaping and control of sound. They work to manipulate and capture the vibration of sound by harnessing the best quality for hearing. These engineers work to manage noise control in a variety of industrial, commercial and domestic settings. Acoustic engineers develop noise buffers and sound barriers to optimize hearing as well as refine technology used in recording and live performance such as microphones and amplifiers. Moreover, they often work to develop solutions for transferring sound energy into electricity. Other professionals in the field design interiors by selecting specific construction materials and aesthetic products to customize the sound experience of a given living or work environment. Private enterprises in the fields of construction, architecture, and entertainment are a few of the employers seeking the expertise of these professionals. They often strive to perfect the sound experience in concert halls and recording studios, while others may employ their skills in the healthcare industry with work on equipment like hearing aids.

These types of professionals may be asked to perform a variety of duties based on the industry they choose to employ their skills and knowledge. In the construction industry, engineers may execute sound and environmental evaluations on a building to ensure it meets codes and regulations. They may examine how alterations in the design of a structure may impact sound quality. In an industrial setting, these professionals utilize digital hardware and software to determine means for lessening sound disruptions in a work facility, while inquiring into how vibrations impact factory equipment or transportation structures such as a bridge or automobile. In the entertainment sphere, these professionals often work to optimize sound quality in recording studios and in live performance venues, evaluating how structures, materials and digital equipment and software enhance sound quality. Often, bioengineering firms seek these professionals to address how ultrasound and other forms of technology provide the best treatment options for patients under a medical professional’s care. Firms across the world like Sony, LA Live, the NFL, Bose, and Honda are a few of the huge companies seeking the services of these acoustic experts.

Read More: a+ jobs near me

Friday, August 7, 2020

Real-life Example of a Transport Engineer Career

 Real-life Example of a Transport Engineer Career

Based on the experience of several young practitioners in the profession, the field of transport engineering offers a rich professional experience. Scott Sorensen , an engineer from the University of Nebraska, developed an after school education program to teach principles of engineering to high school students, whereby they designed buildings and created electrical applications for Christmas lights. Matthew Arnold, an engineer from Kansas State University, finds the hands on nature of the field most engaging. He thrives performing outdoors, enabling him the experience the vitality absent working in an office. Both Sorensen and Arnold enjoy the state-of-the-art technology they employ on a daily basis such as self-driving vehicles. New challenges encountered have made the field particularly rewarding for Tomas Lindheimer, an engineer from the University of Kansas. He enjoys the broad concepts and intellectual curiosity the industry demands. He believes he’s constantly learning new concepts that compel him to rethink his preconceived notions.

The direct impact the field has on people’s lives serves as the most attractive part of the profession for these young professionals. Instead of sitting in an office, detached from their fellow man, these engineers see the influence their work has on the daily lives of the people they serve. Many professors and industry executives encourage aspiring students and candidates to carefully consider the impact their work has on society as a whole. It is one of a few industries where practitioners see first-hand the results their technical backgrounds have on the ways people experience their daily lives.

Read More: a+ certification jobs with no experience

Thursday, August 6, 2020

Nanoengineering Career Outlook

Nanoengineering Career Outlook

Nanoengineering encompasses the practice of the profession on a nanoscale, which stems from the nanometer unit of measure, equivalent to one billionth of a meter. Within the industry, nanoengineering is synonymous with practices of nanotechnology, whereby it focuses on the engineering component of a given technology rather than the scientific side. Nanotechnology professionals have become prized professionals in the current marketplace for their skills and training dealing with microscopic applications.

From the automobile and energy industry to healthcare and technology firms, companies around the world eagerly seek to attract and develop these professionals. Within these realms, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are the dominant techniques of the field used to solve problems and originate new technologies. Both techniques pivot on generating microscopic probes to manipulate and track the movement of atoms with the idea of capturing something significant to translate into real world applications such as revolutionary manufacturing materials or new pharmaceutical products.

Professionals in this field often perform a medley of duties depending on the industry they work in and/or their educational backgrounds. In biosciences, nanoengineers dedicate their time to developing new medical device products and ways to enhance existing ones. From a construction viewpoint, these experts investigate and evaluate the development of new materials to develop more sustainable and durable building products and materials. Automotive companies employ these engineers to develop more efficient processes within an engine system and materials to build and pad vehicle systems and interiors. Regardless of the field, these engineers choose to employ their skills and talents, the field requires immense patience and attention to detail. Refining the effective use of STMs and AFMs, critical to the development of new technologies and breakthroughs, often proves to be challenging for most practitioners in the field. Powerful microscopes with exceptionally fine silicon tips are employed to monitor the nano activity harnessed to develop new applications. Establishing a suitable tip, though, can sometimes take seven days alone. Nevertheless, global firms like Abbott Laboratories, Tesla, Exxon-Mobil, and Sony are a few of the global firms capitalizing on the potential of nanotechnology.

Read More: comptia a+ certification salary

Wednesday, August 5, 2020

Computer Engineering Career Outlook

Computer Engineering Career Outlook

Most people own or have ready access to a personal computer. These marvels of modern technology have revolutionized everything from the way we get our news to how we communicate with friends and relatives to how we entertain ourselves. However, the traditional PC or laptop is only one type of computer. Virtually every modern machine and process is computer-controlled. Some computers are tiny, as in the smallest cell phones and MP3 players.

Other computers are actually massive networks of thinking machines, working on terabytes of data and cranking out billions of calculations per second. The common factor making these machines possible is the Computer Engineer. Computer Engineering differs from Software Engineering and Computer Science in that it focuses on the actual hardware that’s responsible for performing the work. Software is the set of instructions used by a computer to get work done.

Without Computer Engineers designing the hardware platform it runs on, software would be so many useless bits of data. While they need to know the principles of software operation, Computer Engineers are responsible for designing the components of a computing system. Whether that computer is in the Stealth Bomber or under your car’s hood, all computers have similar components and functions, varying mostly in size, shape and application.Computer Engineers design everything from the Central Processing Unit to primary and secondary memory storage to input and output methods. Even if they are using off-the-shelf components, they’re responsible for making sure the integration works flawlessly.

Read More: a+ certification salary

Tuesday, August 4, 2020

Electrical Engineering Career Advancement

Electrical Engineering Career Advancement

Electrical engineers may undergo further training or education in order to qualify for a position that will enable them to supervise a team of engineers and technicians. It may also qualify them for management positions. They can either be program managers or engineering managers. Alternatively, they can become instructors at universities or colleges. Individuals who wish to become an electrical engineer should start their preparations as early as high school. They should have exceptional communication and math skills and be willing to work both indoors and outdoors.

Electrical engineers typically work together with other engineers and other professionals. With this, they should work comfortably and efficiently with a team. Experts highly recommend that graduates get into internship programs. Doing so will allow them to see the real employment world for electronic engineers. It is important that electronic engineers enjoy what they are doing. This career field can be physically and intellectually challenging. This is why aspiring engineers should be sure about their decision.

In 2010, electrical engineers earned as much as $84,540 in median annual wages according to the BLS. The top 10 percent highest earners received about $128,610 while the bottom 10 percent earners took home about $54,030. Among the highest paying electrical engineer jobs in industries employing the largest number of these professionals come from semiconductor and electronic manufacturing companies.

Read More: comptia a + jobs

Software Engineering Professional Associations

There are numerous professional associations where Software Engineers can network and share information. One of the largest and oldest is th...